
A Library for Managing Persistent
Storage

Dennis Heimbigner

CU-CS-3.5 1-86 March 1988

Revisions: April 3, 1987
February .5, 1988

March 9, 1988

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430

The authors gratefully acknowledge the support of the National
Science Foundation grant #DCR-874.5444 in cooperation with the
Defense Advanced Research Project Agency and the IBM
Corporation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
09 MAR 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
A Library for Managing Persistent Storage

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Library for Managing Persistent Storage

Dennis Heimbigner

CU-CS-351-86 March 1988

Revisions:
April 3, 1987
February 5, 1988
March 9, 1988

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

The authors gratefully acknowledge the support of the National Science Foundation
grant #DCR-8745444 in cooperatio;n with the Defense Advanced Research Project
Agency and the IBM Corporation.

1. Introduction and Philosophy
The storage package provides a library of routines by which a program can manage

variable length records or fixed length records in a persistent heap (using Unix files), and
index them using either btrees or extendible hashing.

2. Heap Interface
Figure 1 defines the interface to the heap portion of the library. This heap library

can be used for either fixed length or variable length records. It uses a record size as
its principal parameter. Records of any length can be allocated, although they will be
embedded in an integral number of records.

typedef struct {
int recordsize;
int descr;
filename_p name;
int cachequota;

} heapparams_t, *heapparams_p;

#define MINBYTESPERRECORD 1

typedefintheap_p;

char *heap_errmsg;

extern int heapcreateparam(heap_p *hpp; heapparams_p htp);
extern int heapcreate(heap_p *hpp; char *name; int recordsize);
extern int heapopenparam(heap_p *hpp; heapparams_p htp);
extern int heapopen(heap_p *hpp; char *name);
extern int heapclose(heap_p hp; int deleteit);
extern void heapset(heap_p hp; int value);
extern int heapget(heap_p hp);
extern void heapquery(heap_p hp; heapparam_p htp);
extern int heapdescriptor(heap_p hp);
extern char *heapname(heap_p hp);
extern int heaprecordsize(heap_p hp);
extern void heapprint(heap_p hp);
extern heap_p heapgen(heap_p hp);
extern int heaprecgen(heap_p hp; int prevaddr);
extern int heapalloc(heap_p hp; int nbytes);
extern int heaprealloc(heap_p hp; int address,oldnbytes,newbytes);
extern int heapfree(heap_p hp; int addr,nbytes);
extern int heapread(heap_p hp; int addr; char *buf; int nbytes);
extern int heapwrite(heap_p hp; int addr; char *buf; int nbytes);

Figure 1. Heap Interface.

1

One can create a new heap (using heapcreate()) by specifying its name and the
recordsize (see below), or one can open an existing heap (using heapopen()), by specify
ing its name. In either case, the caller gets back a handle of type heap y. When fin
ished, a programmer calls heapclose() to close a heap, optionally deleting it if the
deleteit parameter has the value TRUE (i.e. !0).

Given a handle to an open heap, one can allocate and free space in it much as one
would using malloc() and free(). Space is allocated using heapalloc(), which is passed
the heap handle and the number of bytes to allocate. It returns a handle to the allocated
space. This record handle is actually a record offset into the heap file. The space allo
cated may be larger than the requested space because the request size is rounded up to
the next multiple of the recordsize as specified in the heapcreate call used to create the
specified heap. The minimum legal record size is one byte. Specifying larger sizes
wastes space in allocation, but saves space in the bitmap used to record allocated space.
Generally, larger record sizes are preferable.

H eapfree() is used to free allocated heap space. It takes a heap handle, an offset
(the value returned by a call to heapalloc()), and a length specifying the length of
space that is to be freed. The length should be the same as was specified in the
corresponding call to heapalloc().

The heaprealloc() routine is used much like realloc(), namely to enlarge or shrink a
previously allocated space. This may result in moving the space to a different offset in
the heap. That offset (changed or not) is returned as the value of this routine.
Heaprealloc() copies the contents of the old space into the contents of the new space.

Access to the contents of an allocated space is made using heap read() and
heapwrite(). These operate like the low-level Unix read() and write() system calls,
except that the file descriptor is replaced with the heap handle.

It is often convenient to store a piece of information with the heap, such as the
offset of a header record. To this end, two routines are provided: heapset() and heap
get(). These allow a program to store and later retrieve a single arbitrary integer with
the heap. This value is persistent, so closing a heap will not cause it to vanish.

When errors occur in the heap library, the routines normally return the value -1.
At the same time, a pointer to a more informative error message is left in the global
variable heap_errmsg. Heapprint() can be called to get a terse debugging printout of the
state of the heap.

The heap also provides for more detailed management of the heap. An instance of
the structure type heapparams _t can be filled in and passed to the routine heap
createparam as an alternative way to create a heap and get a heap handle returned. The
heap parameter type allows the specification not only of the file name and recordsize,
but also which file descriptor to use. Presumably this descriptor is already open. Simi
larly, an existing heap can be opened using heapopenparam.

Given a heap handle, the record size, descriptor number, and name can be obtained
using the routines heaprecordsize(), heapdescriptor(), and heapname() respectively.

It is possible to scan a list of all open heap handles using heapgen(). If heapgen is
called with a zero argument, then it returns the first heap handle. Subsequent calls to
heapgen should pass the previously obtained handle. When there are no more handles,
heapgen will return a zero.

It is possible to scan the complete sequence of allocated records using heaprecgen.
It is called with the heap handle and, initially, a -1 record offset. It returns a record
offset of the first allocated record in the heap. Subsequent calls should pass in the last
record offset obtained and will get back the next record offset. When no more record
offsets can be found, a -1 is returned. This routine is not very useful if the heap has

2

been used to allocate variable length records because these records will span the underly
ing record structure of the heap.

3. Type Management
The storage manager provides indexing methods as its principal feature. Any index

ing method represents a map from one type of value (a domain value) to another type of
value (a range value). For example, a btree might map strings representing the values
of some attribute into integers representing locations in a heap. The index methods
described subsequently all assume that their users will specify sufficient information about
the types used in the index. To this end, a specific interface has been established to
allow users to specify necessary type descriptions.

Figure 2 defines the interface to the type manager portion of the storage library. A
type is represented by an instance of the structure type ixtype _t, which is a collection of
pointers to the functions which define the semantics of the type. This set of operations
is somewhat ad-hoc since it was designed to meet the needs of the indexing systems
provided in this library. The last element in that structure is a single word of user
defined data. Users may extend this structure to include more space for data or opera
tions as long as the first part is compatible with the existing structure.

This package supports three predefined types and is fairly easy to extend to include
others. The predefined types are integers, fixed length strings, and strings of arbitrary
length. The integer type assumes that it is dealing with 32 bit signed integers and does
not use the data field of the ixtype _t structure. For fixed length strings, any instance of
the ixtype _t structure is expected to put the length of the strings into the data field.
Thus different copies of this type structure can be used to manage strings of different
length (but fixed within an instance). Instantiations of arbitrary length strings are ident
ical in properties. Since they store the strings on disk, they differ (potentially) in the
file into which they store the strings. The data field for variable strings is expected to
be a heap handle to a heap in which to store the strings.

The global variable table ixtypetab is an array of pointers to function tables (i.e.
instances of ixtype _t). The indices for each predefined type are specified by the con
stants IXT_INT, IXT_STR, and IXT_VARSTR.
The semantics of the various operations is as follows:
create

When a type is instantiated by making a copy of the appropriate ixtype t structure,
it is created with whatever arguments are needed to create a completed type. Thus
for fixed strings, the actual size of the strings is needed to make a concrete string
type.

destroy
When an instance of ixtype _t is no longer needed, it should be destroyed to reclaim
resources. At the moment, none of the types use this entry.

name
Return a string that is a printable name for this type. This 1s used mostly for
debugging.

size When a type value is allocated into the index, it takes up some space. It is
assumed that all instances of some type are the same size. This function returns
that size.

to memory
Since indices will be stored on disk as well as partly in memory, it must make pro
visions for moving type values to and from the disk. Many types have different

3

typedef struct {
int (*create)(ixtype_p dp; ...);
int (*destroy)(ixtype_p dp;);
char *(*name)(ixtype_p dp;);
int (*size)(ixtype_p dp;);
int (*tomemory)(ixtype_p dp; byte_p disk,mem;);
int (*todisk)(ixtype_p dp; byte_p mem,disk;);
int (*print)(ixtype_p dp; byte_p instance; FILE * f;);
int (*compare)(ixtype_p dp; byte_p instancel, *instance2;);
int (*hash)(ixtype_p dp; byte_p instance;);
int (*insert)(ixtype_p dp; byte_p newinstance,space;);
int (*delete)(ixtype_p dp; byte_p instance;);
int (*update)(ixtype_p dp; byte_p newinstance,oldinstance;);
byte_p data; I* type specific data *I

} ixtype_t, *ixtype_p;

extern ixtype_p ixtypetab[];

#define IXT _INT
#define IXT_STR
#define IXT_ V ARSTR

0 I* Integers *I
1 I* Fixed size strings *I
2 I* Varying size string *I

#define ixtcreate(dp, arg) ((dp)->create(dp, arg))
#define ixtdestroy(dp) ((dp)->destroy(dp))
#define ixtname(dp) ((dp)->name(dp))
#define ixtsize(dp) ((dp)->size(dp))
#define ixttomemory(dp, disk,mem) ((dp)->tomemory(dp, disk,mem))
#define ixttodisk(dp, mem,disk) ((dp)->todisk(dp, mem,disk))
#define ixtprint(dp, instance, f) ((dp)->print(dp, instance, f))
#define ixtcompare(dp, instancel, instance2) ((dp)->compare(dp, instancel, instance2))
#define ixtinsert(dp, newinstance,space) ((dp)->insert(dp, newinstance,space))
#define ixtupdate(dp, newinstance,oldinstance) ((dp)->update(dp, newinstance,oldinstance))
#define ixtdelete(dp, instance) ((dp)->delete(dp, instance))
#define ixthash(dp, instance) ((dp)->hash(dp, instance))
#define ixtcopy(dpsize, srcixt, dstixt) ((void)bcopy(srcixt,dstixt,dpsize))

typedef struct {
int length; I* including the terminating null, if any *I
union { I* discriminated by length* I

diskaddr ptr; I* length > 0 *I
char *mem; I* length< 0 *I

}u;
char prefix[32]; I* must be multiple of ALIGNMENT *I

} varstr_t, *varstr_p;

extern int true_fcn(),false_fcn(),simple_copy(ixtype_p; byte_p; byte_p;);

Figure 2. Type Management Interface.

4

representations on disk as opposed to memory. This entry takes a pointer to a disk
representation converts it to a memory representation, and places it at the location
specified by the second pointer. It should be designed so that the two pointers can
point to the same place. Note that for the size function above, the size refers to
the disk representation, not the memory representation.

to disk
Take a memory representation and convert it to a disk representation. It should be
designed so that the two argument pointers can point to the same place in memory.

print
Print a string representation of a value onto a standard IO channel (i.e., type FILE
*).

compare
Compare two instances and return a value (<0, ==0, >0) as the frrst instance relates
to the second instance. This is intended to act like strcmp but for arbitrary types.

hashGiven an instance of a type, produce a 32 bit integer representing a hash of that
instance.

insert
When an instance is frrst inserted into an index system, this routine is called. It is
passed a pointer to the value to be inserted and a pointer to the space into the
index into which it will be copied. A typical use of this is to convert the instance
into a disk representation and copying that representation into the index space. This
function is made call compatible with the todisk function so that the same function
can be used for both.

delete
At some point, an instance is no longer needed in an index. This routine is called
to reclaim any resources used by the instance.

update
When an instance is to be inserted into an index and a previous instance already
exists in the index, this routine is called with both the instance to be inserted and
the existing instance.

The todisk, insert, update, and delete entries are expected to return the value TRUE
or FALSE to indicate if they succeeded, but currently, no use is made of that return
value.

All of these operators are called with the a pointer to the index type (i.e., the
instance of ixtype _t) as the frrst argument. The remaining arguments, if any, depend on
the operator. In the case of create, they also depend on the type being created.

4. Pair Management
It is assumed by the indexing methods that there is a "pair" structure (actually a tri

ple) that combines together some index specific data called overhead, a domain value,
and a range value, in that order. This structure is termed a "pair". Figure 3 gives some
macros that can be used to get pointers to the various parts of the pair. In these mac
ros, pairsize is the total size (in bytes) of a pair, oversize is the size (in bytes) of the
index specific data, and domsize is the size (in bytes) of a domain value. The ithpair()
macro can be used to obtain a pointer to the i'th pair in a vector of pairs. Similarly,
ithover(), ithdom(), and ithrange() can be used to get pointers to the overhead, domain,
or range, respectively, of the i'th pair.

5

#define ithpair(pairsize,listptr ,index)
((byte_p)((listptr)+(pairsize)*(index)))

#define ithover(pairsize,listptr,index)
((byte_p)((listptr)+(pairsize)*(index)))

#define i thdom(pairsize, oversize ,lis tptr ,index)
((byte_p)(ithpair(pairsize, listptr, index)+(oversize)))

#define ithrange(pairsize, oversize, domsize, listptr, index)
((byte_p)(ithpair(pairsize, listptr, index)+(oversize)+(domsize)))

#define paircopy(pairsize, pairl, pair2)
(void) bcopy(pair 1 ,pair2,pairsize)

#define calc_packing(overhead, pairsize, spacesize)
(((spacesize)-(overhead)) I pairsize)

Figure 3. Pair Interface.

Paircopy() can be used to copy a pair from one location to another. Finally,
calc _packing() will calculate the number of complete pairs that can be packed into a
given amount of space.

5. Generic Index Interface
Most of this library is dedicated to indexing packages. Specifically, btrees and

extendible hashing indexing are provided in the package. These methods have a great
deal of common or generic structure, which is described in this section. Figure 4
defines the basic data structures used by an index. Figure 5 defines the basic functions
provided by an index. The words "btree" or "hash" may be substituted in these figures
for the word "INDEX" to get the name for an actual function in a specific index
method.

An instance of an index can be created using INDEXcreate(). When creating an
index, the caller must specify a place to return the handle to the index, a name for the
index, and the sizes and types of its domain and range. An existing index can be
opened using INDEX open() by specifying a place to store the handle, a name, and, again,
the domain and range types. The sizes of the domain and range will be returned in the
last two parameters if they are non-nil. The specified domain and range should be
compatible with those specified at the time the index was created. In this case, compati
ble only means that they have the same sizes as the types used when the index was
created. In either case, the caller gets back a handle of type INDEX _p. When finished,
a programmer calls INDEX close() to close a INDEX, optionally deleting it.

Given a handle to an open index, a new (domain,range) pair can be inserted using
INDEXinsert(). This takes an index handle, a pointer to a a domain value and a pointer
to a range value. The pair is inserted into the INDEX. The insert or update functions
for the type may be called during the insert. If they fail, then the insert is not

6

typedef struct {
I* first five entries are essential */
filename_p name;
int domainsize;
int rangesize;
ixtype_p domain; /*the domain type of this INDEX_ *I
ixtype_p range; /* the range type of this INDEX_ *I
I* Following should be needed/set only rarely *I
int heap grain; I* for heap open *I
byte_p heap; I* heap for the index *I
byte_p pool; I* pool for the index *I
int poolquota; I* amount of space for pool cache *I

} INDEXparams_t, *INDEXparams_p;

typedef struct {
I* This is almost all index specific *I

} INDEXstat_t, *INDEXstat_p;

typedef int INDEX_p;

typedef int INDEX_cursor_p;

I*
Copyright (C) 1988 Dennis Heimbigner
*I

Figure 4. Generic Index Types.

7

extern int INDEXcreateparam(INDEX_p *IXp; INDEXparams_p ipp);

extern int INDEXcreate(INDEX_p *IXp; filename_p ipname; int domainsize,rangesize;
ixtype_p domain,range);

extern int INDEXopenparam(INDEX_p *IXp; INDEXparams_p ipp);

extern int INDEXopen(INDEX_p *IXp; filename_p ipname; int *domainsize, *range size;
ixtype_p domain,range);

extern int INDEXclose(INDEX_p ip; bool_t deleteit);

extern void INDEXquery(INDEX_p IX; INDEXparams_p ipp);

extern int INDEXfind(INDEX_p IX; byte_p domainval,rangeval; INDEXcursor_p IXc);

extern INDEXcursor_p INDEXsearch_start(INDEX_p IX);

extern void INDEXsearch_stop(INDEX_p IX; INDEXcursor_p IXc);

extern int INDEXsearch_next(INDEX_p IX; INDEXcursor_p IXc, byte_p domainval,rangeval);

extern int INDEXdomain(INDEX_p IX; INDEXcursor_p IXc, byte_p domainval);

extern int INDEXrange(fr~DEX_p IX; INDEXcursor_p IXc, byte_p rangeval);

extern int INDEXinsert(INDEX_p IX; byte_p domainval,rangeval);

extern int INDEXdelete(INDEX_p IX; byte_p domainval);

extern INDEX_p INDEXgen(INDEX_p prev);

extern void INDEXset(INDEX_p IX; int userval);

extern int INDEXget(INDEX_p IX);

extern int INDEXheap(INDEX_p IX);

extern void INDEXgrain(INDEX_p IX; int *domsize, *rngsize);

extern char *INDEX_errmsg;

extern void INDEXprint(INDEX_p IX);

extern void INDEXstats(INDEX_p IX, INDEXstat_p IXs, bool_t detailed);

Figure 5. Generic Index Functions.

performed.

8

Given a handle to an open index, a (domain,range) pair can be deleted by specify
ing the domain value to INDEXdelete(). If no matching entry is found, then the routine
will return FALSE (i.e. 0) otherwise TRUE (i.e. !0).

It is possible to interrogate an index to see if a particular domain value occurs in
the index using the function INDEXfind(). It is called with an index handle and a
domain value. If no matching entry is found, then the routine will return FALSE other
wise TRUE. If a matching domain value is found, the corresponding range value may
be returned if the rangeval parameter is a non-nil pointer. Additionally, a cursor pointer
will be returned in the ixc argument if it is non-nil (see below).

Providing range scanning is an important feature for indices. This means locating
some domain value in the index and then scanning higher values from the index in
domain order. In this package, a scan is established by calling IND EXsearch _start() or
calling IND EX/ind() with a non-nil ixc parameter. In the latter case, the scan starts with
the first domain less or equal to the requested domain. In the former call, the scan
starts with the lowest domain in the index. Since multiple scans may be occurring
simultaneously on the index, a handle to a structure called a cursor is returned to the
user to track a particular scan. A scan is done by repeatedly calling INDEXsearch next()
with the index handle and the cursor handle as inputs. Each time it is called,
INDEXsearch_next() returns a (domain,range) pair of values if space is provided. If no
more pairs exist, the function returns the value FALSE else it returns TRUE. When a
scan is finished, the routine IND EXsearch _stop() should be called to clean up the cursor
and reclaim resources.

At any point in the scan, the current domain can be obtained by calling INDEX
domain(). If no search is established, or there is no legitimate current domain, INDEX
domain() will return FALSE else it will return TRUE. Analogous to INDEXdomain(),
there is a function called INDEXrange() to return the current range value.

It is possible to perform inserts and deletes while simultaneously scanning an index.
The effect depends on the position of the cursor with respect to the domain value being
inserted or deleted. If the value inserted or deleted is before the cursor position, then it
will not be seen during the scan. If it is beyond the current cursor position, then its
effect will be seen when the cursor reaches that point. It the pair right at the current
cursor position is deleted, which means that it has already been scanned, then it will not
be seen, but attempts to call INDEXdomain() or INDEXrange() will fail until the cursor
is advanced. Inserting a value at the current cursor location will be seen during the
scan.

When an error occurs in an index function, it normally return the value -1. A
more detailed error message will be left in the external variable INDEX_errmsg. The
routine INDEXprint() can be called to get a terse debugging printout of the state of the
index.

A number of functions are similar to some provided for the heap described above.
All of the open index handles can be generated using INDEXgen(). It operates much
like heapgen(). It is also possible to store a word of data with an index using INDEX
set() and INDEXget().

The index also provides for more detailed management. An instance of the struc
ture type IND EXparams _t (see figure 4) can be filled in and passed to the routine
INDEXcreateparam() as an alternative way to create an index and get an index handle
returned. The index parameter type allows one to specify a whole raft of parameters
about the index to be created. Generally, any of the entries can be filled with a zero
and a default value will then be used during creation. Similarly, one can open an exist
ing index using IND EXopenparam().

9

Given an index handle, one can obtain its current set of parameters using INDEX
query(). this can be done for any open index. As a special case, an INDEXgrain()
function is provided to obtain the domain and range sizes associated with an index han
dle.

It is expected that every index package will record statistics about its perlormance
on a per-index basis. The set of meaningful statistics is entirely index specific. At any
time, the current set of statistics may obtained by calling the function INDEXstats(),
which takes an index handle, a pointer to an instance of the structure INDEXstat t, and
a boolean to indicate the level of detail of the statistics. -

6. Btree Indexing
One of the instances of the generic indexing is a btree package. B trees provide

reasonably fast access, plus a scan of the tree can be done in domain order. The types
btreeparams _t and btreestat _t are specific to the btree and are shown in figure 6.

7. Extendible Hash Indexing
One of the instances of the generic indexing is an extendible hashing package. As

a rule, this is faster than a btree, but unlike a btree, it is impossible to do true range
scanning. The scan order is entirely determined by the hash function. Thus, the only
use would be to scan all instances in the table in some arbitrary order. The types
hashparams_t and hashstat_t are specific to the hash and are shown in figure 7.

8. Pool Subsystem
The pool module is a major subsystem used by both the btree and the the extendible
hashing packages. However, users may want to use it as a frontend to the heap package
to obtain its caching facilities.
The pool package serves two purposes:

(1) It ensures that all references to a leaf or node point to one copy in memory,
(2) It caches a limited number of nodes and/or leaves in memory to improve perlor

mance.
The pool operates as an interlace between the index package and the underlying

heap that is used to store the data for the index. It consists of a hash table to map
heap addresses to buffers within the pool. It also features an Lru chain of released
buffers to serve as the cache.

Figure 8 shows the interlace provided by the pool package. A pool is created using
poolcreate() by specifying a heap handle, a size for the hash table, and a cache limit
(i.e., quota). The quota refers to the number of buffers to cache and not to the total
space. A pool may be destroyed using pooldestroy().

The principal operations on the pool provide for the allocation of space in the heap
and reading and writing from the heap. However, since these activities are cached, The
data may not be immediately written to heap. The poola/loc() function operates more or
less like heapalloc, except that it takes a pool handle rather than a heap handle. Note
that the heap offset is returned in an argument (addr) rather than as the value of the
function. The value returned by the function is a pointer to a memory buffer which will
be written (eventually) to the specified offset in the heap. There is also a poolrealloc()
function with the obvious semantics.

10

typedef struct {
I* first five entries are essential *I
filename_p name;
int domainsize;
int rangesize;
ixtype_p domain; /* the domain type of this btree *I
ixtype_p range; /*the range type of this btree *I
I* Following should be needed/set only rarely*/
int heapgrain; /*for heap open *I
byte_p heap; /* heap for the tree *I
byte_p pool; /*pool for the tree *I
/* actual poolquota is this poolquota-1, so 0 still means default* I

/* => poolquota of 1 in this structure is really 0 internally*/
int poolquota;
/* Index specific data *I
int node size; /* physical size in bytes. *I
int leaf size; /* physical size in bytes *I
int pairspernode;
int pairsperleaf;

} btreeparams_t, *btreeparams_p;

typedef struct (
int levels;
int nodeno;
int leafno;
int pairspernode;
int pairsperleaf;

/* number of layers in tree *I
/* # nodes in tree *I
/*#leaves in tree*/

int *leafstats; /* for each leaf,# of entrys *I
/*following should match poollib.h */
struct {

int quota; /*max# of buffers in lru chain */
int probes; /* #of probes into table */
int hit; /* # of times buffer is found in table *I
int lruhit; /* # of times buffer is found and is on

int read;
int write;

} poolstats;
} btreestat_t, *btreestat_p;

#ifndef B TREEKERNEL
typedef int btree_p;

typedef int btreecursor_p;
#endif

lru chain*/
/* # of buffers read from disk *I
/* # of buffers written to disk *I

Figure 6. Btree specific types.

11

typedef struct {
I* first five entries are essential */
fllename_p name;
int domainsize;
int rangesize;
ixtype_p domain; /* the domain type of this tab lee *I
ixtype_p range; /* the range type of this tab lee *I
/*Following should be needed/set only rarely*/
int heapgrain; /*for heap open*/
byte_p heap; /* heap for the tree *I
byte_p pool; /* pool for the tree *I
/* actual poolquota is this poolquota-1, so 0 still means default* I

/* => poolquota of 1 in this structure is really 0 internally*/
int poolquota; /*for pool create */
I* L11dex specific data *I
int leaf size; I* physical size in bytes *I
int pairsperleaf;
int max_depth;
float pad_factor;

} hashparams_t, *hashparams_p;

typedef struct {
int tablesize;
int leafno;
int pairsperleaf;
struct leafstat {

/* current # slots in hash table *I
/*#leaves in table*/

int full;/* # full slots in leaf *I
int deleted; /* # deleted slots in leaf *I

} *leafs tats; /* length = leafno *I
/* following should match poollib.h */
struct {

int quota; /*max# of buffers in lru chain*/
int probes; /*#of probes into table*/
int hit; /* # of times buffer is found in table *I
int lruhit; /*#of times buffer is found and is on

int read;
int write;

} poolstats;
} hashstat_t, *hashstat_p;

#ifndef HASHKERNEL
typedef int hash_p;

typedef int hashcursor_p;
#endif

lru chain*/
/* # of buffers read from disk *I
/*#of buffers written to disk*/

Figure 7. Extendible Hash specific types.

12

typedef struct {
int quota; /*max# of buffers in 1ru chain*/
int probes; /*#of probes into table*/
int hit; /* # of times buffer is found in table *I
int lruhit; /*#of times buffer is found and is on 1ru chain*/
int read; /* # of buffers read from disk *I
int write; /* # of buffers written to disk *I

} poolstat_t, *poolstat_p;

#define NILPOOL (pool_p)0

typedef int pool_p;

extern int poolcreate(pool_p *pp; heap_p hp; int tablesize,quota);
extern void pooldestroy(pool_p cc);
extern char *poolalloc(pool_p pp; int length, *addr);
extern void poolfree(pool_p pp; int addr,length);
extern char *poolread(pool_p pp; int length,addr);
extern void poolwrite(pool_p pp; char *data);
extern void poolsync(pool_p pp);
extern void poolrelease(pool_p pp; char *data);
extern int pooladdr(pool_p pp; char *data);
extern void poolbumpref(pool_p pp; char *data);
extern char *poolrealloc(pool_p pp; char *data; int new length, *addr);
extern poolprint(pool_p pp);
extern void poolstats(pool_p pp; poolstat_p ps);
extern void poolbufquery(pool_p pp; char *buf; int *addr, *length, *bufid);

Figure 8. Poolib.h.

One may read a specific chunk of the heap by using poolread() and specifying a
length and a heap offset. Again, the result is a memory pointer to a buffer containing
that data. If the requested data is already in memory (as determined by the heap offset),
then the pre-existing buffer will be returned. The poolwrite() function indicates that a
buffer has been modified in memory and should be written back to the heap. The write
will be delayed until buffer is to be destroyed or re-used. Poolsync() may be used at
any point to force all dirty buffers to be written back to the heap.

It is important to realize that the a reference count is associated with the pool
buffers. Every poolalloc() and poolread() increments the count. As long as the count is
greater than zero, the buffer will never be re-used. Poolrelease() tells the pool to decre
ment the reference count. As side effect, the buffer is placed on the cache list, which
in turn may force a buffer off the cache to keep within quota.

There are a couple of miscellaneous functions for manipulating the pool or buffers.
It is possible to get the heap address associated with a buffer using pooladdr(), and it is
possible to increment the referenc count for a specific buffer using poolbumpref().

Finally, it is possible to get a debugging printout of the state of the pool using
poolprint(), and statistics may be obtained using pools tats(). The statistics returned can
be seen by examining the type pools tat _t.

13

9. Using the Library
The storage system consists of the heap, the btree, the hash table, the pre-defined

types, and miscellaneous support packages, all combined into a single library. The user
of this library will need the following three files:
storagelib.a

This is the library file for the storage system. It contains the code for btree,
extended hash, heap, and pre-defined types. If you intend to use the library, then
you need to make sure that this library is loaded with your code. For example:

cc yourprog.c storagelib.a

storagelib.h
The definitions required to use the storage library are kept m this file. You should
#include it in appropriate places in your code.

Hi b-lstore.ln
This is a lint library for the storage system. You may use use 1t 1n your lint com
mands to keep lint quiet and to check conformity between your code and the
storage library.

10. Implementation Notes

10.1. Conditional Compilation Flags
This system is parameterized in very few ways. But there are two conditional compila
tion flags whose meaning you should understand.
NOALIGN

Some machines (e.g., IBM RT, Sun4) require integers pointers to point to 4 byte
boundaries. Other machines (e.g., Vax, Sun3) do not have such a requirement. if
the NOALIGN flag is defined, then the index methods will do a certain amount of
space compaction in the index. There is a price to be paid for turning this flag on,
however, because some other algorithms must switch from 4 bytes at a time copy to
1 byte at a time, so the system will slow down noticeably. In general, since the
space saved is minimal and the performance degradation is substantial, this flag
should be left undefined.

11. Setup
Once you have unpacked the files into their appropriate subdirectories, you should

take an inventory by the following command:
make Inventory

the only differences should be the names of files that you specifically placed in the
directory.

Next, you need to modify the Makefiles to match your environment. In particular
for each of the following conditions, you should execute the corresponding command:

(1) If your C compiler does not support the -M flag for generating Makefile depen
dencies, execute:

make NoM

(2) If your machine is not a Sun, then if probably does not support the Sun debug
version of malloc(), so you should execute:

make N oMalloc

14

After this, you need to build some header files and set up the dependency lists in the
Makefiles. To do this, execute the command

make setup

At this point, you can construct the library itself by executing:
make all

This will construct storagelib.a (the library) and llib-lstore.ln (a lint library).

12. Testing the Library
The subdirectory named tests contains a large number of programs to test the opera

tion of the components of the storage library. If you can get these tests to execute
correctly on your machine, there is a good chance that the library will work for your
applications. If you execute the command

make all
then the test will be compiled, executed, and compared with a reference set of results.
The results are placed in a file tests, the reference set is in tests.ref and the comparison
(using diff) is in testdiffs.

If you see differences, then that indicates that there is a problem and you will have
to investigate the cause of the difference. Unfortunately, you are on your own at this
point.

This package has been successfully tested under the following machines: Sun 3, Sun
4, IBM RT, Pyramid, Vax 780, Mips, and Encore.

13. Performance
The subdirectory perfs contains two programs, bperfO and eperfO, to measure some

aspects of the performance of the btree and extendible hash packages respectively. Each
operates by creating an index and then inserting some number of entries into the index.
Each takes a number of optional command line arguments:
-c <count>

Specifies the number of items to insert into the index
-d If specified, then more detailed statistics will be provided as output.
-k If specified, then the index will not be deleted at the end of the program's execu-

tion.
-1 <leafsize>

Specifies the size (in bytes) of leaves in the index.
-n <nodesize>

Specifies the size (in bytes) of nodes in the index. Applies only to btrees.
-o If specified then the entries to be inserted will be consecutive integers starting at 0.
-q <quota>

Specifies the number of buffers to cache in the pool subsystem. Since the clock
time is totally driven by the number of disk accesses, increasing this can have a
dramatic effect on execution time.

-s <seed>
If "-c~~ is not specified, then the the entries to be inserted are random 32 bit
integers. The seed for the random number generator is specified by this parameter.

15

The default settings are as follows:
bperfO -c 10000 -14096 -n 4096 -q 6 -s 1
eperfO -c 10000 -14096 -q 14 -s 1

The quota settings were chosen so that both programs would have approximately 50% hit
ratios in the cache and would do the approximately the same number of read and write
systems calls.

16

Appendix A: The Common Definitions Header
The file common.h contains a set of miscellaneous definitions that are used in the
library. This file is included as part of storagelib.h and is the most likely to cause con
flicts with your applications code.

#include <syslparam.h>
I* define a bunch of library stuff so that lint wont complain *I
extern char * getwd();
extern long atol();
extern char *malloc();
extern char *memalign();
extern char *realloc();
extern char *strcpy();
extern char *strcat();
extern char *strncpy();
extern long lseek();
I*VARARGS*I
extern int fprintf();
I*VARARGS*I
extern char *sprintf();

#include <errno.h>
extern int errno;

I* Define some useful types *I
#ifndefTRUE
typedef int boolean;
typedef int bool_t;
#define true 1
#define false 0
#define TRUE 1
#define FALSE 0
#endif

Figure A1 (a). Common.h (Part 1).

17

I* allow us to be more specific about pointers *I
typedef char byte, *byte_p;

#define nil 0

typedef char name_t[MAXP A THLEN], *name_p;
typedef char filename_t[MAXP A THLEN], *filename_p;

typedef int diskaddr; I* must potentially allow negatives *I
#define NOADDRESS -1 I* Assumed to be impossible disk address *I

I* defined some sizes so the macros can work *I
#define BITSPERBYTE NBBY
#define BYTESPERINT NBPW
#define BITSPERINT(BITSPERBYTE*BYTESPERINT)
#define MAXINT ((int)Ox7fffffff)

I* mise macros *I
#define min(x,y) ((x)<=(y)?(x):(y))
#define max(x,y) ((x)>=(y)?(x):(y))
#define multiple(x,y) (y*(l +(x-1)1y)) I* fmd next multiple of y larger than x *I

I* use an alternative malloc that checks nil result *I
extern char *xmalloc();
extern char *xrealloc();
extern char *xmemalign();

I* Defme the Alignment requirement for this Machine *I
#ifdef NOALIGN
#define ALIGNMENT 1
#else
#define ALIGNMENT sizeof(int)
#endif

Figure Al (b). Common.h (Part 2).

Appendix B: Sample Performance Measurements
Figures B 1 and B2 show some sample performance measurements. from various
machines. This table should be read as anecdotal and not as a comprehensive set of
tests. In the table, bperjD and eperjD were each run twice.

18

Index Parameters
Index Method Iterations Node size (bytes) Leaf size (bytes) Cache quota

Btree 10000 4096 4096 6
Hash 10000 - 4096 14

Index Computed Parameters
Index Method Node Fanout Leaf fanout Cache hit rate (%) #reads/#wri te s

Btree 512 511 54 4603
Hash - 337 53 4751

Times (msec/insert
Machine Btree Hash

Clock CPU System Clock CPU System
Sun 3/75 (client) 5.7 1.5 3.6 9.0 0.9 3.1

Sun 3/260 (server) 12.3 1.0 2.6 6.8 0.6 2.3
IBMRT 10.2 1.2 2.5 15.4 0.6 2.1

Pyramid 90x 13.4 3.2 9.5 9.6 1.4 7.5
Vax 780 10.4 4.2 8.7 11.7 2.1 7.1

Encore (8 Processor) 21.4 5.1 21.1 18.2 2.3 17.9
Mips 4.6 0.4 1.4 5.3 0.2 1.6

Figure B 1. Test 1 Measurement Samples

19

Index Parameters
Index Method Iterations Node size (bvtes) Leaf size (bvtes) Cache auota

Btree 10000 4096 4096 0
Hash 10000 - 4096 0

Index Computed Parameters
Index Method Node Fanout Leaf fanout Cache hit rate (%) #reads/#writes

Btree 512 511 0 10032
Hash - 337 0 10163

Times (msec/insert)
Machine Btree Hash

Clock CPU System Clock CPU System
Sun 3/75 (client) 10.3 1.8 6.1 12.0 1.2 5.9

Sun 3/260 (server) 12.2 1.2 4.1 11.5 0.8 4.2
IBMRT 19.2 1.2 4.3 25.8 0.8 3.9

Pvramid 90x 25.8 3.7 17.2 19.9 1.8 15.2
Vax 780 20.0 4.7 14.4 20.3 2.6 12.9

Encore (8 Processor) 40.0 5.8 39.7 38.2 3.0 37.5
Mips 8.4 0.5 2.6 9.9 0.3 2.6

Figure B2. Test 2 Measurement Samples

20

1

